A Framework for Specifying, Prototyping, and
Reasoning about Computational Systems

Andrew Gacek

Department of Computer Science and Engineering
University of Minnesota

PhD Defense
September 8, 2009

Motivation

We are interested in a framework for developing formal systems

Some example formal systems:

e Evaluation and typing in a programming language
e Provability in a logic

e Behavior in a concurrency system

A framework should support:

e Specification, prototyping, reasoning
e Working with objects with variable binding structure

Our Approach to Building a Framework

A logic-based approach:

o A specification logic which encodes formal systems through
logical formulas

e Prototyping via a computational interpretation of the
specification logic

e A reasoning logic which can internalize the specification logic
and be used to prove properties of specifications

A higher-order approach:

e Both logics incorporate the A-calculus in their term structure
so we can represent binding

e They contain logical devices for analyzing such structure

Contributions

e The logic G for reasoning about specifications

e Abella: an implementation of G which incorporates the
two-level logic approach to reasoning

e Rich examples constructed in Abella which verify the power of
G and the usefulness and practicality of the two-level logic
approach to reasoning

Example: Mini-ML

Mini-ML Syntax

a:=int|a— a

to=x|tt|(fn x:a => t)

Mini-ML Evaluation

t || v means t evaluates to v

(fn x:a => r) || (fn x:a => r)

m{ (fn x:a => r) rlx:==n] v

mnlv

Reasoning about Mini-ML

Theorem (Determinacy of Evaluation)
Iftlvandtl wthenv=w

Proof.
Induction on the derivation of £ |} v
Proceed by cases,
e tand v are both (fn x:a => r)
Must be that w is (fn x:a => r)
e tismn
e Must have m || (fn x:a => r) and r[x:=n] | v

e Must have m | (fn x:b => s) and s[x :=n] | w
e By induction r = s, and thus by induction v = w

A Higher-order Abstract Syntax Representation

Object level binding can be represented with meta-level abstraction

Constants for Mini-ML
int :: type
arrow :: type — type — type
app :: term — term — term

fun :: type — (term — term) — term

Example
fn x : int => fn y : int => x
fun int (Ax. fun int (A\y. x))

Binding issues are now treated in the meta-level

Basic Structure for Reasoning

Formulas over expressions from the simply-typed A-calculus
Atomic formulas encode object system judgments

Relationships between judgments can be expressed with logical
formulas

The formal system provides a means for deriving sequents of

the form:
Hy,....H, — C

Some Core Rules of the Logic

r—~B BTl —C

rB—B" r—c o

L—ctt r—rt1 %
r,Bi—C , r——-B Ir—¢
FBAB —C & r—Brc
r—B r.D—C_, 8—C
B>D—C ° r—B-5C"
[, Blh/x] — C M — B[t/x]

raxB — ¢ £ F— 3x.B

Definitions

The syntax of definitions: VX.H(X) £ B(X)
Atomic formulas are interpreted as fixed-points of such definitions

eval (fun AR) (fun AR) 2T
eval (app M N) V = 3A3R. eval M (fun A R) Aeval (R N) V

We can encode this in a single definitional clause:

eval TV = 3AR T=(fun AR)AV = (fun AR)) V
(IM,N,A,R. T = (app M N) A
eval M (fun A R) Neval (R N) V)

10

Logical Rules for Definitions

Let p be defined by

Bpt— C r—Bpt

rpf_C defC defR

r—opt

We also have rules for induction and co-induction for appropriate
definitions

11

Formally Proving Determinacy of Evaluation

Theorem
Vt,v,w. (eval t vAeval t w) Dv=w

Proof.
Apply rules for ¥, A, and D

’evaltv,eva/tw—>v:w‘

Case analysis on eval t v

o

v = (fun ar)

’eval (fun ar) W—»(funar)zw‘

Case analysis on eval (fun a r) w

’—»(funar):(funar)‘

e t=(appmn)...

O

12

Dynamic Aspects of Binding

Consider a typing judgment for Mini-ML

x:aecl Fr-m:a—b l+n:a
NEx:a Fr'mn:b
MNx:abr:b x ¢ dom(r)

N-(fn x:a =>r):a— b
of [X A% member (X : A)T

of T (app M N) BE3A. of T M (arrow A B)Aof T N A
of T (fun A R) (arrow A B) £ Vx. of ((x:A)=T) (R x) B

13

Some Properties of the V Quantifier

Vx.F introduces a fresh “variable name” for x

We have the following structural properties for V:
Vx.Vy.F =Vy.Vx.F

Vx.F =F if x does not appear in F

If we allow V quantification at a type, then we assume there are
infinitely many fresh names at that type

14

Logical Rules for the V Quantifier

Bla/x], — C I — Bla/x]
Vx.B,l — C [— Vx.B

a is a nominal constant not appearing in B

The treatment of nominal constants requires permutations of
nominal constants to be considered in the equivalence of formulas

In particular, we change the initial rule to

m id, if B=nr.B

15

Typing Example with V

of I X A= member (X :A)T
of T (app M N) BE3A. of T M (arrow A B)Aof T N A
of T (fun A R) (arrow A B) = Vx. of ((x:A):=:T) (R x) B

— member (c : int) ((d : int) :: (¢ : int) :: nil)
— of ((d :int) :: (c:int) :: nil) ¢ int
— Vx.of ((x:int):: (c:int):: nil) c int
— of ((c:int) :: nil) (fun int (\y. ¢)) (arrow int int)
— Vx. of ((x :int) =2 nil) (fun int (\y. x)) (arrow int int)

— of nil (fun int (Ax. fun int (\y. x))) (arrow int (arrow int int))

16

Reasoning about Type Uniqueness

Vt,a,b. (of nil tanof nil t b) Da=b
VI, t,a,b. (of TtaNof Ttb)Da=b

VI, t,a,b. (cntx TANof Ttanof Tth)Da=0b

cntx I should enforce
eM=(x1:a1):(xx:a) ... (xp:an): nil
e Each x; is atomic
e Each x; is unique

Definitions can serve to capture such meta-level properties
cntx nil & T

cntx ((X : A) = L) 2 “X atomic and not occurring in L" A cntx L

17

Analyzing Occurrences of Nominal Constants
We introduce the device of nominal abstraction:
()\Xl oo)\Xn.S) >t

This holds exactly when there exist nominal constants c1,..., ¢,
such that (Axq - -+ Ax,.s) is equal to (Acy - - - Acy.t)

Examples

e “X is atomic”
(A\z.z)> X

e “X is atomic and does not occur in L”
(A\z.fresh z L) > fresh X L

18

Nominal Abstraction as a Modular Extension of Equality

F—t=t -~

{r[6] — C[0] | all 8 such that (s = t)[6]}
s=t, —C

=L

FTM >R, if s>t holds

{T'I0] — C[0] | all 6 such that (s> t)[[ﬁ]]}
st — C

-[-] is a generalized notion of substitution which respects the scope
of nominal constants

19

Summary of the Logic G

have a logic with ...

simply-typed A-terms for representation
atomic formulas for encoding judgments
fixed-point definitions for encoding rules

induction (and co-induction) over appropriate fixed-point
definitions

V quantifier for introducing fresh names

nominal abstraction for analyzing occurrences of names

20

Cut and Cut-elimination

r—B B, I —C
r—C

cut

Cut is useful for. ..

e using lemmas during reasoning
e enabling shorter proofs

e allowing flexible proof construction

Cut is problematic for. ..

e proving the consistency of our logic

e designing automatic proof search

The best solution is to show cut-elimination

21

How to Prove Cut-elimination in General

To show that cut can be eliminated, we provide a syntactic
procedure that eliminates instances cut

My M, I
Fr— B I — B B, — C AL
FN— BiANB; A BiANBy,, — C !
r—c cut
My M
r—B B, —C
r—C cut

The difficulty is then showing that this procedure always terminates

Proving Cut-elimination for G

Tiu and Momigliano prove cut-elimination for Linc™ (a subset of G)
using a notion of parametric reducibility for derivations that is
based on the Girard’s proof of strong normalizability for System F
A key lemma in this proof is:

o If I — C has a proof then I'[§] — C[0] has a simpler proof

G expands on Linc™ with V-quantification, nominal constants, and
nominal abstraction

The following two lemmas are key:
e If I — C has a proof then (7). — 7.C has the same proof
e If I — C has a proof then ['[0] — C[6] has a simpler proof

Then Tiu and Momigliano’s proof extends to cut-elimination for G

23

Adequacy

How do we connect results in G to results about the object system?

e We show a bijection between the expressions of the object
system and their representation as terms in G

e We then show an “if and only if” relationship between
judgments of the object system and their encoding as atomic
formulas in G

Adequacy means that this kind of connection exists between an
object system and its encoding in a logic

Cut-elimination plays an essential role here since it restricts the sort
of proofs we have to consider

24

Using Adequacy (Example)

Suppose we have proven
VT,V ,A. (eval T V ANof nil T A)Dof nil VA (1)

Theorem
Iftvand-t:athentv:a

Proof.
e By adequacy we know — eval "t "v ' and
—— of nil "t "a® have proofs in G

e Using these with (1) and various rules of G (particularly cut)
we can construct a proof of — of nil "v T3’

e By adequacy we know - v : a O

25

A Specification Logic

AAIFG AlF Gle/x]
AFASG ATFVx.G
Al GE/x] - AlF GulE/]
AlFA

where VX.(G1 D -+ D Gn D A') € A and A[t/X] = A

Proofs in this logic reflect computations in many formal systems

Vm, n,a, b.(of m (arrow a b) D of na D of (app m n) b)
Vr,a,b.((Vx.of x aD of (r x) b) D of (fun a r) (arrow a b))

26

The Two-level Logic Approach to Reasoning

The specification logic sequent A, L I G is encoded as the atomic
formula seq "L TG

seq L (imp AG) =seq(A:L)G

seq L (all B) £ Vx.seq L (B x)
seq L A £ member A L
seq L A £ 3b.prog AbAseq L b

Where prog encodes the formulas of A:

prog (of (fun A R) (arrow A B))
(all Ax.(imp (of x A) (of (Rx) B)))= T

27

Benefits of the Two-level Logic Approach to Reasoning

We can formally prove properties of seq once, and use them as
lemmas about particular specifications

Monotonicity
VL, K, G. (VX.member X L D member X K) DseqL G Dseq K G

Instantiation
VL, G. Vx. seq (L x) (G x) DVt.seq (Lt) (G t)

Cut admissibility
VLA G.seq(A::L) GDseqLADseq L G

28

Implementation

Abella is an interactive, tactics-based implementation of the
reasoning logic which focuses on the two-level logic approach to
reasoning and hides most of the supporting machinery

http://abella.cs.umn.edu

e Open source and freely available

Includes documentation, walkthroughs, and live examples
Released in February 2008

Hundreds of downloads so far

29

Successful Applications
Determinacy, type preservation, and equivalence of various
evaluation strategies
POPLmark Challenge 1a, 2a
Cut admissibility for a sequent calculus with quantifiers
Properties of bisimulation in the 7-calculus

Church-Rosser property for A-calculus
e Contributed by Randy Pollack

Substitution for Canonical LF

e Contributed by Todd Wilson
e The “triple-8" and “double-3" proofs

30

Theorem subst_mé&r :

Statement of the Triple-8 Lemma

forall Tx Ty,

stype Tx -> stype Ty ->

forall Tx$ Ty$,

(forall Xs N
vetx Xs ->
{Xs, var x
exists M7,

(forall Xs N
vctx Xs ->
{Xs, var x
exists M7,

(forall Xs N
vetx Xs ->
{Xs, var x
exists M,

(forall Xs N
vetx Xs ->
{Xs, var x
exists R,

(forall Xs N
vetx Xs ->
{Xs, var x
exists M,

(forall Xs N
vetx Xs ->
{Xs, var x
exists M7,

(forall Xs N
vctx Xs ->
{Xs, var x
exists M7,

(forall Xs N
vetx Xs ->
{Xs, var x
exists R,

{subt Tx$ Tx} -> {subt Ty$ Ty} ->
L L> M M° M’, nabla x y, mvs. m (y x)
tmm Xs N -> {Xs |- subst_m Tx$ L N L’} ->

|- subst_m Ty$ (y\ M x y) (L x) (M* x)} -> {Xs, var y |- subst_m Tx$ (x\ M x y) N
{Xs |- subst_m Tx$ M N M} /\ {Xs |- subst_m Ty$ M’ L’ M"}) N
L L’ R M T¢ R?, nabla x y, Wkh tm ovs. rr (y x) WAk

tmm Xs N -> {Xs |- subst_m Tx$ L N L’} ->

|- subst_rm Ty$ (y\ R x y) (L x) (M¢ x) T} -> {Xs, var y |- subst_rr Tx$ (x\ R x
{Xs |- subst_m Tx$ M N M"} /\ {Xs |- subst_rm Ty$ R’ L’ M~ T‘}) /\

L L’ RRE M T, nabla x y, Wk Tr vs. o (y %) Wkh

tmm Xs N -> {Xs |- subst_m Tx$ L N L’} ->

|- subst_rr Ty$ (y\ R x y) (L x) (R® x)} -> {Xs, var y |- subst_rm Tx$ (x\ R x y)
{Xs |- subst_rm Tx$ R¢ N M” T°} /\ {Xs |- subst_m Ty$ M’ L’ M"}) N\

L L’ R R R’, nabla x y, Whwh rr vs. rr (y x) Whkh

tmm Xs N -> {Xs |- subst_m Tx$ L N L’} ->

|- subst_rr Ty$ (y\ R x y) (L x) (R® x)} -> {Xs, var y |- subst_rr Tx$ (x\ R x y)
{Xs |- subst_rr Tx$ R N R} /\ {Xs |- subst_rr Ty$ R’ L’ R7}) AN

L L> MM M’, nabla x y, Wk m vs. m (x y) %

tmm Xs N -> {Xs |- subst_m Ty$ L N L’} ->

|- subst_m Tx$ (y\ M x y) (L x) (M x)} -> {Xs, var y |- subst_m Ty$ (x\ M x y) N
{Xs |- subst_m Ty$ M N M"} /\ {Xs |- subst_m Tx$ M’ L> M°}) AN

L L” R M T R’, nabla x y, W rm vs. rr (x y) %

tmm Xs N -> {Xs |- subst_m Ty$ L N L’} ->

|- subst_rm Tx$ (y\ R x y) (L x) (M° x) T‘} -> {Xs, var y |- subst_rr Ty$ (x\ R x
{Xs |- subst_m Ty$ M N M"} /\ {Xs |- subst_rm Tx$ R’ L’ M~ T‘}) /\

L L> R R* M’ T?, nabla x y, YA rr vs. rm (x y) A%k

tnm Xs N -> {Xs |- subst_m Ty$ L N L’} ->

|- subst_rr Tx$ (y\ R x y) (L x) (R)} -> {Xs, var y |- subst_rm Ty$ (x\ R x y)
{Xs |- subst_rm Ty$ R* N M” T’} /\ {Xs |- subst_m Tx$ M’ L’ M"}) AN

L L’ R R R’, nabla x y, Wk Tr vs. rr (x y) WAkh

tmm Xs N -> {Xs |- subst_m Ty$ L N L’} ->

|- subst_rr Tx$ (y\ R x y) (L x) (R® x)} -> {Xs, var y |- subst_rr Ty$ (x\ R x y)
{Xs |- subst_rr Ty$ R* N R"} /\ {Xs |- subst_rr Tx$ R’ L’ R"}).

oy >

y) N R 7}

N (M y) T’}

¥R P >

oy} ->

¥) N (R ¥}

N QU oy) T}

¥R P >

->

->

Conclusions & Future Work

Summary of contributions:

e The logic G and nominal abstraction

e The Abella system and its incorporation of the two-level logic
approach to reasoning

e Rich examples which validate G, Abella, and the two-level logic
approach to reasoning

Future directions:
e Alternative specification logics
e Stronger forms of definitions and (co-)inductive principles
e Improving the usability of Abella

e An integrated toolset

32

