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Motivation

We are interested in a framework for developing formal systems

Some example formal systems:

e Evaluation and typing in a programming language
e Provability in a logic

e Behavior in a concurrency system

A framework should support:

e Specification, prototyping, reasoning
e Working with objects with variable binding structure



Our Approach to Building a Framework

A logic-based approach:

o A specification logic which encodes formal systems through
logical formulas

e Prototyping via a computational interpretation of the
specification logic

e A reasoning logic which can internalize the specification logic
and be used to prove properties of specifications

A higher-order approach:

e Both logics incorporate the A-calculus in their term structure
so we can represent binding

e They contain logical devices for analyzing such structure



Contributions

e The logic G for reasoning about specifications

e Abella: an implementation of G which incorporates the
two-level logic approach to reasoning

e Rich examples constructed in Abella which verify the power of
G and the usefulness and practicality of the two-level logic
approach to reasoning



Example: Mini-ML

Mini-ML Syntax

a:=int|a— a

to=x|tt|(fn x:a => t)

Mini-ML Evaluation

t || v means t evaluates to v

(fn x:a => r) || (fn x:a => r)

m{ (fn x:a => r) rlx:==n] v

mnlv



Reasoning about Mini-ML

Theorem (Determinacy of Evaluation)
Iftlvandtl wthenv=w

Proof.
Induction on the derivation of £ |} v
Proceed by cases,
e tand v are both (fn x:a => r)
Must be that w is (fn x:a => r)
e tismn
e Must have m || (fn x:a => r) and r[x:=n] | v

e Must have m | (fn x:b => s) and s[x :=n] | w
e By induction r = s, and thus by induction v = w



A Higher-order Abstract Syntax Representation

Object level binding can be represented with meta-level abstraction

Constants for Mini-ML
int :: type
arrow :: type — type — type
app :: term — term — term

fun :: type — (term — term) — term

Example
fn x : int => fn y : int => x
fun int (Ax. fun int (A\y. x))

Binding issues are now treated in the meta-level



Basic Structure for Reasoning

Formulas over expressions from the simply-typed A-calculus
Atomic formulas encode object system judgments

Relationships between judgments can be expressed with logical
formulas

The formal system provides a means for deriving sequents of

the form:
Hy,....H, — C



Some Core Rules of the Logic

r—~B BTl —C

rB—B" r—c o

L—ctt r—rt1 %
r,Bi—C , r——-B Ir—¢
FBAB —C & r—Brc
r—B r.D—C_, 8—C
B>D—C ° r—B-5C"
[, Blh/x] — C M — B[t/x]

raxB — ¢ £ F— 3x.B



Definitions

The syntax of definitions: VX.H(X) £ B(X)
Atomic formulas are interpreted as fixed-points of such definitions

eval (fun AR) (fun AR) 2T
eval (app M N) V = 3A3R. eval M (fun A R) Aeval (R N) V

We can encode this in a single definitional clause:

eval TV = 3AR T=(fun AR)AV = (fun AR)) V
(IM,N,A,R. T = (app M N) A
eval M (fun A R) Neval (R N) V)

10



Logical Rules for Definitions

Let p be defined by

Bpt— C r—Bpt

rpf_C defC defR

r—opt

We also have rules for induction and co-induction for appropriate
definitions
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Formally Proving Determinacy of Evaluation

Theorem
Vt,v,w. (eval t vAeval t w) Dv=w

Proof.
Apply rules for ¥, A, and D

’evaltv,eva/tw—>v:w‘

Case analysis on eval t v

o

v = (fun ar)

’eval (fun ar) W—»(funar)zw‘

Case analysis on eval (fun a r) w

’—»(funar):(funar)‘

e t=(appmn)...

O
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Dynamic Aspects of Binding

Consider a typing judgment for Mini-ML

x:aecl Fr-m:a—b l+n:a
NEx:a Fr'mn:b
MNx:abr:b x ¢ dom(r)

N-(fn x:a =>r):a— b
of [ X A% member (X : A)T

of T (app M N) BE3A. of T M (arrow A B)Aof T N A
of T (fun A R) (arrow A B) £ Vx. of ((x:A)=T) (R x) B
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Some Properties of the V Quantifier

Vx.F introduces a fresh “variable name” for x

We have the following structural properties for V:
Vx.Vy.F =Vy.Vx.F

Vx.F =F if x does not appear in F

If we allow V quantification at a type, then we assume there are
infinitely many fresh names at that type
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Logical Rules for the V Quantifier

Bla/x], — C I — Bla/x]
Vx.B,l — C [— Vx.B

a is a nominal constant not appearing in B

The treatment of nominal constants requires permutations of
nominal constants to be considered in the equivalence of formulas

In particular, we change the initial rule to

m id, if B=nr.B
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Typing Example with V

of I X A= member (X :A)T
of T (app M N) BE3A. of T M (arrow A B)Aof T N A
of T (fun A R) (arrow A B) = Vx. of ((x:A):=:T) (R x) B

— member (c : int) ((d : int) :: (¢ : int) :: nil)
— of ((d :int) :: (c:int) :: nil) ¢ int
— Vx.of ((x:int):: (c:int):: nil) c int
— of ((c:int) :: nil) (fun int (\y. ¢)) (arrow int int)
— Vx. of ((x :int) =2 nil) (fun int (\y. x)) (arrow int int)

— of nil (fun int (Ax. fun int (\y. x))) (arrow int (arrow int int))
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Reasoning about Type Uniqueness

Vt,a,b. (of nil tanof nil t b) Da=b
VI, t,a,b. (of TtaNof Ttb)Da=b

VI, t,a,b. (cntx TANof Ttanof Tth)Da=0b

cntx I should enforce
eM=(x1:a1):(xx:a) ... (xp:an): nil
e Each x; is atomic
e Each x; is unique

Definitions can serve to capture such meta-level properties
cntx nil & T

cntx ((X : A) = L) 2 “X atomic and not occurring in L" A cntx L
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Analyzing Occurrences of Nominal Constants
We introduce the device of nominal abstraction:
()\Xl oo )\Xn.S) >t

This holds exactly when there exist nominal constants c1,..., ¢,
such that (Axq - -+ Ax,.s) is equal to (Acy - - - Acy.t)

Examples

e “X is atomic”
(A\z.z)> X

e “X is atomic and does not occur in L”
(A\z.fresh z L) > fresh X L
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Nominal Abstraction as a Modular Extension of Equality

F—t=t -~

{r[6] — C[0] | all 8 such that (s = t)[6]}
s=t, —C

=L

FTM >R, if s>t holds

{T'I0] — C[0] | all 6 such that (s> t)[[ﬁ]]}
st — C

-[-] is a generalized notion of substitution which respects the scope
of nominal constants
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Summary of the Logic G

have a logic with ...

simply-typed A-terms for representation
atomic formulas for encoding judgments
fixed-point definitions for encoding rules

induction (and co-induction) over appropriate fixed-point
definitions

V quantifier for introducing fresh names

nominal abstraction for analyzing occurrences of names
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Cut and Cut-elimination

r—B B, I —C
r—C

cut

Cut is useful for. ..

e using lemmas during reasoning
e enabling shorter proofs

e allowing flexible proof construction

Cut is problematic for. ..

e proving the consistency of our logic

e designing automatic proof search

The best solution is to show cut-elimination
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How to Prove Cut-elimination in General

To show that cut can be eliminated, we provide a syntactic
procedure that eliminates instances cut

My M, I
Fr— B I — B B, — C AL
FN— BiANB; A BiANBy,, — C !
r—c cut
My M
r—B B, —C
r—C cut

The difficulty is then showing that this procedure always terminates



Proving Cut-elimination for G

Tiu and Momigliano prove cut-elimination for Linc™ (a subset of G)
using a notion of parametric reducibility for derivations that is
based on the Girard’s proof of strong normalizability for System F
A key lemma in this proof is:

o If I — C has a proof then I'[§] — C[0] has a simpler proof

G expands on Linc™ with V-quantification, nominal constants, and
nominal abstraction

The following two lemmas are key:
e If I — C has a proof then (7). — 7.C has the same proof
e If I — C has a proof then ['[0] — C[6] has a simpler proof

Then Tiu and Momigliano’s proof extends to cut-elimination for G
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Adequacy

How do we connect results in G to results about the object system?

e We show a bijection between the expressions of the object
system and their representation as terms in G

e We then show an “if and only if” relationship between
judgments of the object system and their encoding as atomic
formulas in G

Adequacy means that this kind of connection exists between an
object system and its encoding in a logic

Cut-elimination plays an essential role here since it restricts the sort
of proofs we have to consider
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Using Adequacy (Example)

Suppose we have proven
VT,V ,A. (eval T V ANof nil T A)Dof nil VA (1)

Theorem
Iftvand-t:athentv:a

Proof.
e By adequacy we know — eval "t "v ' and
—— of nil "t "a® have proofs in G

e Using these with (1) and various rules of G (particularly cut)
we can construct a proof of — of nil "v T3’

e By adequacy we know - v : a O
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A Specification Logic

AAIFG AlF Gle/x]
AFASG ATFVx.G
Al GE/x] - AlF GulE/]
AlFA

where VX.(G1 D -+ D Gn D A') € A and A[t/X] = A

Proofs in this logic reflect computations in many formal systems

Vm, n,a, b.(of m (arrow a b) D of na D of (app m n) b)
Vr,a,b.((Vx.of x aD of (r x) b) D of (fun a r) (arrow a b))
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The Two-level Logic Approach to Reasoning

The specification logic sequent A, L I G is encoded as the atomic
formula seq "L TG

seq L (imp AG) =seq(A:L)G

seq L (all B) £ Vx.seq L (B x)
seq L A £ member A L
seq L A £ 3b.prog AbAseq L b

Where prog encodes the formulas of A:

prog (of (fun A R) (arrow A B))
(all Ax.(imp (of x A) (of (Rx) B)))= T

27



Benefits of the Two-level Logic Approach to Reasoning

We can formally prove properties of seq once, and use them as
lemmas about particular specifications

Monotonicity
VL, K, G. (VX.member X L D member X K) DseqL G Dseq K G

Instantiation
VL, G. Vx. seq (L x) (G x) DVt.seq (Lt) (G t)

Cut admissibility
VLA G.seq(A::L) GDseqLADseq L G

28



Implementation

Abella is an interactive, tactics-based implementation of the
reasoning logic which focuses on the two-level logic approach to
reasoning and hides most of the supporting machinery

http://abella.cs.umn.edu

e Open source and freely available

Includes documentation, walkthroughs, and live examples
Released in February 2008

Hundreds of downloads so far
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Successful Applications
Determinacy, type preservation, and equivalence of various
evaluation strategies
POPLmark Challenge 1a, 2a
Cut admissibility for a sequent calculus with quantifiers
Properties of bisimulation in the 7-calculus

Church-Rosser property for A-calculus
e Contributed by Randy Pollack

Substitution for Canonical LF

e Contributed by Todd Wilson
e The “triple-8" and “double-3" proofs
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Theorem subst_mé&r :

Statement of the Triple-8 Lemma

forall Tx Ty,

stype Tx -> stype Ty ->

forall Tx$ Ty$,

(forall Xs N
vetx Xs ->
{Xs, var x
exists M7,

(forall Xs N
vctx Xs ->
{Xs, var x
exists M7,

(forall Xs N
vetx Xs ->
{Xs, var x
exists M,

(forall Xs N
vetx Xs ->
{Xs, var x
exists R,

(forall Xs N
vetx Xs ->
{Xs, var x
exists M,

(forall Xs N
vetx Xs ->
{Xs, var x
exists M7,

(forall Xs N
vctx Xs ->
{Xs, var x
exists M7,

(forall Xs N
vetx Xs ->
{Xs, var x
exists R,

{subt Tx$ Tx} -> {subt Ty$ Ty} ->
L L> M M° M’, nabla x y, mvs. m (y x)
tmm Xs N -> {Xs |- subst_m Tx$ L N L’} ->

|- subst_m Ty$ (y\ M x y) (L x) (M* x)} -> {Xs, var y |- subst_m Tx$ (x\ M x y) N
{Xs |- subst_m Tx$ M N M} /\ {Xs |- subst_m Ty$ M’ L’ M"}) N
L L’ R M T¢ R?, nabla x y, Wkh tm ovs. rr (y x) WAk

tmm Xs N -> {Xs |- subst_m Tx$ L N L’} ->

|- subst_rm Ty$ (y\ R x y) (L x) (M¢ x) T} -> {Xs, var y |- subst_rr Tx$ (x\ R x
{Xs |- subst_m Tx$ M N M"} /\ {Xs |- subst_rm Ty$ R’ L’ M~ T‘}) /\

L L’ RRE M T, nabla x y, Wk Tr vs. o (y %) Wkh

tmm Xs N -> {Xs |- subst_m Tx$ L N L’} ->

|- subst_rr Ty$ (y\ R x y) (L x) (R® x)} -> {Xs, var y |- subst_rm Tx$ (x\ R x y)
{Xs |- subst_rm Tx$ R¢ N M” T°} /\ {Xs |- subst_m Ty$ M’ L’ M"}) N\

L L’ R R R’, nabla x y, Whwh rr vs. rr (y x) Whkh

tmm Xs N -> {Xs |- subst_m Tx$ L N L’} ->

|- subst_rr Ty$ (y\ R x y) (L x) (R® x)} -> {Xs, var y |- subst_rr Tx$ (x\ R x y)
{Xs |- subst_rr Tx$ R N R} /\ {Xs |- subst_rr Ty$ R’ L’ R7}) AN

L L> MM M’, nabla x y, Wk m vs. m (x y) %

tmm Xs N -> {Xs |- subst_m Ty$ L N L’} ->

|- subst_m Tx$ (y\ M x y) (L x) (M x)} -> {Xs, var y |- subst_m Ty$ (x\ M x y) N
{Xs |- subst_m Ty$ M N M"} /\ {Xs |- subst_m Tx$ M’ L> M°}) AN

L L” R M T R’, nabla x y, W rm vs. rr (x y) %

tmm Xs N -> {Xs |- subst_m Ty$ L N L’} ->

|- subst_rm Tx$ (y\ R x y) (L x) (M° x) T‘} -> {Xs, var y |- subst_rr Ty$ (x\ R x
{Xs |- subst_m Ty$ M N M"} /\ {Xs |- subst_rm Tx$ R’ L’ M~ T‘}) /\

L L> R R* M’ T?, nabla x y, YA rr vs. rm (x y) A%k

tnm Xs N -> {Xs |- subst_m Ty$ L N L’} ->

|- subst_rr Tx$ (y\ R x y) (L x) (R )} -> {Xs, var y |- subst_rm Ty$ (x\ R x y)
{Xs |- subst_rm Ty$ R* N M” T’} /\ {Xs |- subst_m Tx$ M’ L’ M"}) AN

L L’ R R R’, nabla x y, Wk Tr vs. rr (x y) WAkh

tmm Xs N -> {Xs |- subst_m Ty$ L N L’} ->

|- subst_rr Tx$ (y\ R x y) (L x) (R® x)} -> {Xs, var y |- subst_rr Ty$ (x\ R x y)
{Xs |- subst_rr Ty$ R* N R"} /\ {Xs |- subst_rr Tx$ R’ L’ R"}).

oy >

y) N R 7}

N (M y) T’}

¥R P >

oy} ->

¥) N (R ¥}

N QU oy) T}

¥R P >

->

->



Conclusions & Future Work

Summary of contributions:

e The logic G and nominal abstraction

e The Abella system and its incorporation of the two-level logic
approach to reasoning

e Rich examples which validate G, Abella, and the two-level logic
approach to reasoning

Future directions:
e Alternative specification logics
e Stronger forms of definitions and (co-)inductive principles
e Improving the usability of Abella

e An integrated toolset
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