
The Abella Interactive Theorem Prover
(System Description)

Andrew Gacek

Department of Computer Science and Engineering
University of Minnesota

IJCAR ’08
August 12, 2008



Characteristics of the Abella System

Abella is a theorem proving system that

I is geared towards reasoning about formal systems
specified via structural rules

I uses higher-order abstract syntax in a fundamental way

I based on a two-level logic approach
I (executable) specification logic for describing formal

systems
I meta-logic for reasoning about specification logic

descriptions

I exploits key specification logic properties as lemmas in the
meta-logic



Formal Systems Specified via Structural Rules

x : a ∈ Γ
Γ ` x : a

Γ ` t1 : a → b Γ ` t2 : a
Γ ` (t1 t2) : b

Γ, x : a ` t : b
Γ ` (λx :a. t) : a → b

x /∈ dom(Γ)

Type uniqueness
If Γ ` t : a and Γ ` t : b then a = b

Type preservation
If Γ, x : a ` t1 : b and Γ ` t2 : a then Γ ` t1[x := t2] : b



Formal Systems Specified via Structural Rules

x : a ∈ Γ
Γ ` x : a

Γ ` t1 : a → b Γ ` t2 : a
Γ ` (t1 t2) : b

Γ, x : a ` t : b
Γ ` (λx :a. t) : a → b

x /∈ dom(Γ)

Type uniqueness
If Γ ` t : a and Γ ` t : b then a = b

Type preservation
If Γ, x : a ` t1 : b and Γ ` t2 : a then Γ ` t1[x := t2] : b



Higher-order Abstract Syntax

Higher-order abstract syntax uses meta-level abstraction to
represent object-level binding

x −→ (var x)

(t1 t2) −→ (app t1 t2)

λx :a. t −→ (abs a (λx . t))

Benefits
I α-equivalence completely handled by the meta-level

(abs a (λx .t)) = (abs a (λy .t [x := y ]))

I capture-avoiding substitution realized via β-reduction

(app (abs a t1) t2) =⇒ (t1 t2)



Higher-order Abstract Syntax

Higher-order abstract syntax uses meta-level abstraction to
represent object-level binding

x −→ (var x)

(t1 t2) −→ (app t1 t2)

λx :a. t −→ (abs a (λx . t))

Benefits
I α-equivalence completely handled by the meta-level

(abs a (λx .t)) = (abs a (λy .t [x := y ]))

I capture-avoiding substitution realized via β-reduction

(app (abs a t1) t2) =⇒ (t1 t2)



Higher-order Abstract Syntax

Higher-order abstract syntax uses meta-level abstraction to
represent object-level binding

x −→ (var x)

(t1 t2) −→ (app t1 t2)

λx :a. t −→ (abs a (λx . t))

Benefits
I α-equivalence completely handled by the meta-level

(abs a (λx .t)) = (abs a (λy .t [x := y ]))

I capture-avoiding substitution realized via β-reduction

(app (abs a t1) t2) =⇒ (t1 t2)



Two-level Logic Approach

Advocated by McDowell, Miller, and Tiu

Structure
I specification logic for describing formal systems
I meta-logic for reasoning about specification logic

descriptions

Some of the benefits
I clean separation between specification and reasoning

so features of each logic can be tailored to needs
(e.g., executable vs rich)

I allows for different specification logics



Two-level Logic Approach

Advocated by McDowell, Miller, and Tiu

Structure
I specification logic for describing formal systems
I meta-logic for reasoning about specification logic

descriptions

Some of the benefits
I clean separation between specification and reasoning

so features of each logic can be tailored to needs
(e.g., executable vs rich)

I allows for different specification logics



Design of the Specification Logic

The specification logic should
I support rule-based descriptions

Horn clause like descriptions of relations
I provide support for higher-order abstract syntax

permit explicit representations of binding

lambda terms as data structures

have mechanisms for logically analyzing binding

unification over lambda conversion rules

contain declarative means for recursion over binding structure

generic goals to move object level binding to the meta level

I be executable

subset of λProlog which has an efficient implementation
http://teyjus.cs.umn.edu

Abella uses second-order hereditary Harrop formulas

http://teyjus.cs.umn.edu


Design of the Specification Logic

The specification logic should
I support rule-based descriptions

Horn clause like descriptions of relations

I provide support for higher-order abstract syntax

permit explicit representations of binding

lambda terms as data structures

have mechanisms for logically analyzing binding

unification over lambda conversion rules

contain declarative means for recursion over binding structure

generic goals to move object level binding to the meta level

I be executable

subset of λProlog which has an efficient implementation
http://teyjus.cs.umn.edu

Abella uses second-order hereditary Harrop formulas

http://teyjus.cs.umn.edu


Design of the Specification Logic

The specification logic should
I support rule-based descriptions

Horn clause like descriptions of relations

I provide support for higher-order abstract syntax
permit explicit representations of binding

lambda terms as data structures

have mechanisms for logically analyzing binding

unification over lambda conversion rules

contain declarative means for recursion over binding structure

generic goals to move object level binding to the meta level

I be executable

subset of λProlog which has an efficient implementation
http://teyjus.cs.umn.edu

Abella uses second-order hereditary Harrop formulas

http://teyjus.cs.umn.edu


Design of the Specification Logic

The specification logic should
I support rule-based descriptions

Horn clause like descriptions of relations

I provide support for higher-order abstract syntax
permit explicit representations of binding

lambda terms as data structures

have mechanisms for logically analyzing binding

unification over lambda conversion rules

contain declarative means for recursion over binding structure

generic goals to move object level binding to the meta level

I be executable

subset of λProlog which has an efficient implementation
http://teyjus.cs.umn.edu

Abella uses second-order hereditary Harrop formulas

http://teyjus.cs.umn.edu


Design of the Specification Logic

The specification logic should
I support rule-based descriptions

Horn clause like descriptions of relations

I provide support for higher-order abstract syntax
permit explicit representations of binding

lambda terms as data structures

have mechanisms for logically analyzing binding

unification over lambda conversion rules

contain declarative means for recursion over binding structure

generic goals to move object level binding to the meta level

I be executable

subset of λProlog which has an efficient implementation
http://teyjus.cs.umn.edu

Abella uses second-order hereditary Harrop formulas

http://teyjus.cs.umn.edu


Design of the Specification Logic

The specification logic should
I support rule-based descriptions

Horn clause like descriptions of relations

I provide support for higher-order abstract syntax
permit explicit representations of binding

lambda terms as data structures

have mechanisms for logically analyzing binding

unification over lambda conversion rules

contain declarative means for recursion over binding structure

generic goals to move object level binding to the meta level

I be executable

subset of λProlog which has an efficient implementation
http://teyjus.cs.umn.edu

Abella uses second-order hereditary Harrop formulas

http://teyjus.cs.umn.edu


Design of the Specification Logic

The specification logic should
I support rule-based descriptions

Horn clause like descriptions of relations

I provide support for higher-order abstract syntax
permit explicit representations of binding

lambda terms as data structures

have mechanisms for logically analyzing binding

unification over lambda conversion rules

contain declarative means for recursion over binding structure

generic goals to move object level binding to the meta level

I be executable

subset of λProlog which has an efficient implementation
http://teyjus.cs.umn.edu

Abella uses second-order hereditary Harrop formulas

http://teyjus.cs.umn.edu


Design of the Specification Logic

The specification logic should
I support rule-based descriptions

Horn clause like descriptions of relations
I provide support for higher-order abstract syntax

permit explicit representations of binding

lambda terms as data structures

have mechanisms for logically analyzing binding

unification over lambda conversion rules

contain declarative means for recursion over binding structure

generic goals to move object level binding to the meta level

I be executable

subset of λProlog which has an efficient implementation
http://teyjus.cs.umn.edu

Abella uses second-order hereditary Harrop formulas

http://teyjus.cs.umn.edu


Design of the Specification Logic

The specification logic should
I support rule-based descriptions

Horn clause like descriptions of relations
I provide support for higher-order abstract syntax

permit explicit representations of binding
lambda terms as data structures

have mechanisms for logically analyzing binding

unification over lambda conversion rules

contain declarative means for recursion over binding structure

generic goals to move object level binding to the meta level

I be executable

subset of λProlog which has an efficient implementation
http://teyjus.cs.umn.edu

Abella uses second-order hereditary Harrop formulas

http://teyjus.cs.umn.edu


Design of the Specification Logic

The specification logic should
I support rule-based descriptions

Horn clause like descriptions of relations
I provide support for higher-order abstract syntax

permit explicit representations of binding
lambda terms as data structures

have mechanisms for logically analyzing binding
unification over lambda conversion rules

contain declarative means for recursion over binding structure

generic goals to move object level binding to the meta level

I be executable

subset of λProlog which has an efficient implementation
http://teyjus.cs.umn.edu

Abella uses second-order hereditary Harrop formulas

http://teyjus.cs.umn.edu


Design of the Specification Logic

The specification logic should
I support rule-based descriptions

Horn clause like descriptions of relations
I provide support for higher-order abstract syntax

permit explicit representations of binding
lambda terms as data structures

have mechanisms for logically analyzing binding
unification over lambda conversion rules

contain declarative means for recursion over binding structure
generic goals to move object level binding to the meta level

I be executable

subset of λProlog which has an efficient implementation
http://teyjus.cs.umn.edu

Abella uses second-order hereditary Harrop formulas

http://teyjus.cs.umn.edu


Design of the Specification Logic

The specification logic should
I support rule-based descriptions

Horn clause like descriptions of relations
I provide support for higher-order abstract syntax

permit explicit representations of binding
lambda terms as data structures

have mechanisms for logically analyzing binding
unification over lambda conversion rules

contain declarative means for recursion over binding structure
generic goals to move object level binding to the meta level

I be executable
subset of λProlog which has an efficient implementation
http://teyjus.cs.umn.edu

Abella uses second-order hereditary Harrop formulas

http://teyjus.cs.umn.edu


Design of the Meta-logic

The meta-logic should
I be able to encode the specification logic

atomic judgments unraveled by definitions

I allow descriptions of properties of specifications

atomic judgments can be combined using
meta-logic connectives

I provide mechanisms for reasoning about the specification
logic treatment of binding constructs

generic judgments to represent generic goals

I support inductive arguments over the structure of
specifications

natural number induction

Abella uses the logic G [LICS08] as a meta-logic



Design of the Meta-logic

The meta-logic should
I be able to encode the specification logic

atomic judgments unraveled by definitions

I allow descriptions of properties of specifications

atomic judgments can be combined using
meta-logic connectives

I provide mechanisms for reasoning about the specification
logic treatment of binding constructs

generic judgments to represent generic goals

I support inductive arguments over the structure of
specifications

natural number induction

Abella uses the logic G [LICS08] as a meta-logic



Design of the Meta-logic

The meta-logic should
I be able to encode the specification logic

atomic judgments unraveled by definitions

I allow descriptions of properties of specifications

atomic judgments can be combined using
meta-logic connectives

I provide mechanisms for reasoning about the specification
logic treatment of binding constructs

generic judgments to represent generic goals

I support inductive arguments over the structure of
specifications

natural number induction

Abella uses the logic G [LICS08] as a meta-logic



Design of the Meta-logic

The meta-logic should
I be able to encode the specification logic

atomic judgments unraveled by definitions

I allow descriptions of properties of specifications

atomic judgments can be combined using
meta-logic connectives

I provide mechanisms for reasoning about the specification
logic treatment of binding constructs

generic judgments to represent generic goals

I support inductive arguments over the structure of
specifications

natural number induction

Abella uses the logic G [LICS08] as a meta-logic



Design of the Meta-logic

The meta-logic should
I be able to encode the specification logic

atomic judgments unraveled by definitions

I allow descriptions of properties of specifications

atomic judgments can be combined using
meta-logic connectives

I provide mechanisms for reasoning about the specification
logic treatment of binding constructs

generic judgments to represent generic goals

I support inductive arguments over the structure of
specifications

natural number induction

Abella uses the logic G [LICS08] as a meta-logic



Design of the Meta-logic

The meta-logic should
I be able to encode the specification logic

atomic judgments unraveled by definitions

I allow descriptions of properties of specifications

atomic judgments can be combined using
meta-logic connectives

I provide mechanisms for reasoning about the specification
logic treatment of binding constructs

generic judgments to represent generic goals

I support inductive arguments over the structure of
specifications

natural number induction

Abella uses the logic G [LICS08] as a meta-logic



Design of the Meta-logic

The meta-logic should
I be able to encode the specification logic

atomic judgments unraveled by definitions

I allow descriptions of properties of specifications
atomic judgments can be combined using
meta-logic connectives

I provide mechanisms for reasoning about the specification
logic treatment of binding constructs

generic judgments to represent generic goals

I support inductive arguments over the structure of
specifications

natural number induction

Abella uses the logic G [LICS08] as a meta-logic



Design of the Meta-logic

The meta-logic should
I be able to encode the specification logic

atomic judgments unraveled by definitions

I allow descriptions of properties of specifications
atomic judgments can be combined using
meta-logic connectives

I provide mechanisms for reasoning about the specification
logic treatment of binding constructs

generic judgments to represent generic goals

I support inductive arguments over the structure of
specifications

natural number induction

Abella uses the logic G [LICS08] as a meta-logic



Design of the Meta-logic

The meta-logic should
I be able to encode the specification logic

atomic judgments unraveled by definitions

I allow descriptions of properties of specifications
atomic judgments can be combined using
meta-logic connectives

I provide mechanisms for reasoning about the specification
logic treatment of binding constructs

generic judgments to represent generic goals

I support inductive arguments over the structure of
specifications

natural number induction

Abella uses the logic G [LICS08] as a meta-logic



Exploiting Specification Logic Properties in Reasoning

Specification logic properties are encoded via lemmas in Abella

I The context lemma allows weakening, permutation, and
contraction of the specification logic context

if pv(Γ1, C) and Γ1 ⊆ Γ2 then pv(Γ2, C)

if Γ1 ` t : a and permute(Γ1, Γ2) then Γ2 ` t : a

I The instantiation lemma instantiates generic variables in
the specification logic

I The cut lemma relieves a specification logic hypothesis
with a proof of such a hypothesis

if pv(Γ,∀x .H ⇒ C) and pv(Γ, H[x := v ]) then pv(Γ, C[x := v ])

if Γ, x : a ` t1 : b and Γ ` t2 : a then Γ ` t1[x := t2] : b

The framework accommodates additional lemmas like these



Exploiting Specification Logic Properties in Reasoning

Specification logic properties are encoded via lemmas in Abella

I The context lemma allows weakening, permutation, and
contraction of the specification logic context

if pv(Γ1, C) and Γ1 ⊆ Γ2 then pv(Γ2, C)

if Γ1 ` t : a and permute(Γ1, Γ2) then Γ2 ` t : a

I The instantiation lemma instantiates generic variables in
the specification logic

I The cut lemma relieves a specification logic hypothesis
with a proof of such a hypothesis

if pv(Γ,∀x .H ⇒ C) and pv(Γ, H[x := v ]) then pv(Γ, C[x := v ])

if Γ, x : a ` t1 : b and Γ ` t2 : a then Γ ` t1[x := t2] : b

The framework accommodates additional lemmas like these



Exploiting Specification Logic Properties in Reasoning

Specification logic properties are encoded via lemmas in Abella

I The context lemma allows weakening, permutation, and
contraction of the specification logic context

if pv(Γ1, C) and Γ1 ⊆ Γ2 then pv(Γ2, C)

if Γ1 ` t : a and permute(Γ1, Γ2) then Γ2 ` t : a

I The instantiation lemma instantiates generic variables in
the specification logic

I The cut lemma relieves a specification logic hypothesis
with a proof of such a hypothesis

if pv(Γ,∀x .H ⇒ C) and pv(Γ, H[x := v ]) then pv(Γ, C[x := v ])

if Γ, x : a ` t1 : b and Γ ` t2 : a then Γ ` t1[x := t2] : b

The framework accommodates additional lemmas like these



Exploiting Specification Logic Properties in Reasoning

Specification logic properties are encoded via lemmas in Abella

I The context lemma allows weakening, permutation, and
contraction of the specification logic context

if pv(Γ1, C) and Γ1 ⊆ Γ2 then pv(Γ2, C)

if Γ1 ` t : a and permute(Γ1, Γ2) then Γ2 ` t : a

I The instantiation lemma instantiates generic variables in
the specification logic

I The cut lemma relieves a specification logic hypothesis
with a proof of such a hypothesis

if pv(Γ,∀x .H ⇒ C) and pv(Γ, H[x := v ]) then pv(Γ, C[x := v ])

if Γ, x : a ` t1 : b and Γ ` t2 : a then Γ ` t1[x := t2] : b

The framework accommodates additional lemmas like these



Exploiting Specification Logic Properties in Reasoning

Specification logic properties are encoded via lemmas in Abella

I The context lemma allows weakening, permutation, and
contraction of the specification logic context

if pv(Γ1, C) and Γ1 ⊆ Γ2 then pv(Γ2, C)

if Γ1 ` t : a and permute(Γ1, Γ2) then Γ2 ` t : a

I The instantiation lemma instantiates generic variables in
the specification logic

I The cut lemma relieves a specification logic hypothesis
with a proof of such a hypothesis

if pv(Γ,∀x .H ⇒ C) and pv(Γ, H[x := v ]) then pv(Γ, C[x := v ])

if Γ, x : a ` t1 : b and Γ ` t2 : a then Γ ` t1[x := t2] : b

The framework accommodates additional lemmas like these



Exploiting Specification Logic Properties in Reasoning

Specification logic properties are encoded via lemmas in Abella

I The context lemma allows weakening, permutation, and
contraction of the specification logic context

if pv(Γ1, C) and Γ1 ⊆ Γ2 then pv(Γ2, C)

if Γ1 ` t : a and permute(Γ1, Γ2) then Γ2 ` t : a

I The instantiation lemma instantiates generic variables in
the specification logic

I The cut lemma relieves a specification logic hypothesis
with a proof of such a hypothesis

if pv(Γ,∀x .H ⇒ C) and pv(Γ, H[x := v ]) then pv(Γ, C[x := v ])

if Γ, x : a ` t1 : b and Γ ` t2 : a then Γ ` t1[x := t2] : b

The framework accommodates additional lemmas like these



Exploiting Specification Logic Properties in Reasoning

Specification logic properties are encoded via lemmas in Abella

I The context lemma allows weakening, permutation, and
contraction of the specification logic context

if pv(Γ1, C) and Γ1 ⊆ Γ2 then pv(Γ2, C)

if Γ1 ` t : a and permute(Γ1, Γ2) then Γ2 ` t : a

I The instantiation lemma instantiates generic variables in
the specification logic

I The cut lemma relieves a specification logic hypothesis
with a proof of such a hypothesis

if pv(Γ,∀x .H ⇒ C) and pv(Γ, H[x := v ]) then pv(Γ, C[x := v ])

if Γ, x : a ` t1 : b and Γ ` t2 : a then Γ ` t1[x := t2] : b

The framework accommodates additional lemmas like these



Exploiting Specification Logic Properties in Reasoning

Specification logic properties are encoded via lemmas in Abella

I The context lemma allows weakening, permutation, and
contraction of the specification logic context

if pv(Γ1, C) and Γ1 ⊆ Γ2 then pv(Γ2, C)

if Γ1 ` t : a and permute(Γ1, Γ2) then Γ2 ` t : a

I The instantiation lemma instantiates generic variables in
the specification logic

I The cut lemma relieves a specification logic hypothesis
with a proof of such a hypothesis

if pv(Γ,∀x .H ⇒ C) and pv(Γ, H[x := v ]) then pv(Γ, C[x := v ])

if Γ, x : a ` t1 : b and Γ ` t2 : a then Γ ` t1[x := t2] : b

The framework accommodates additional lemmas like these



Successful Applications of Abella

I Determinacy and type preservation of various evaluation
strategies

I POPLmark Challenge 1a, 2a

I Cut admissibility for a sequent calculus

I Church-Rosser property for λ-calculus

I Tait-style weak normalizability proof [LFMTP08]

The code for all these examples is on the Abella website



Conclusion

The Abella website has tutorials, examples, downloads, papers,
and documentation

http://abella.cs.umn.edu/

Ask me for a demo!

http://abella.cs.umn.edu/

